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Confirmatory Analyses of Componential Test Structure
Using Multidimensional Item Response Theory
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The componential structure of synonym tasks is investigated using confirmatory
multidimensional two-parameter IRT models. It was hypothesized that an open synonym task
is decomposable into generating synonym candidates and evaluating these candidate words
with respect to their synonymy with the stimulus word. Two subtasks were constructed to
identify these two components. Different confirmatory models were estimated both with
TESTMAP and with NOHARM. The componential hypothesis was supported, but it was
found that the generation subtask also involved some evaluation and that generation and
evaluation were highly correlated.

Parallel with the advent of a cognitive stream in test theory (see, e.g.,
Frederiksen, Mislevy, & Bejar, 1993; Mislevy, 1996), extensions of the
standard models in Item Response Theory (IRT) have been proposed, in which
parameters are included to model more elementary, cognitive psychological
aspects or cognitive components of item solving. Examples of such
componential IRT models can be found in Bock, Gibbons, and Muraki (1988),
Butter, De Boeck, and Verhelst (1998), Embretson (1980, 1984), Fischer
(1973, 1983), Hoskens and De Boeck (1995), Jannarone (1986), Kelderman
and Rijkes (1994), Maris (1995), Stegelmann (1983), and van Leeuwe and
Roskam (1991). The cognitive components can refer to cognitive processes, to
multiple latent abilities involved in item solving, or to features of item difficulty.
The IRT modeling of these components is done within either a unidimensional
or a multidimensional latent space, making use of dichotomous or polytomous
item scores.
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According to Embretson (1983) an important advantage of componential
IRT models as a general methodology for assessing the componential structure
of a task is that these models measure both the items and the persons on the
constructs involved in the processing of a task. Moreover, they specify how
item and person characteristics interact to produce response potential. In
comparison with a cognitive, experimental approach, componential IRT
models do also provide an individual differences model beside a model for
cognitive processes, whereas in an experimental approach individual
differences are not dealt with in an explicit way. In comparison with a factor-
analytic approach, componential IRT models do also provide a model for how
characteristics of the task and items affect the responses, whereas in factor
analysis components are only based on correlations of individual differences
between tasks.

Componential IRT modeling needs a carefully constructed test design
(Embretson, 1985), involving a prior conceptualization of the cognitive
structure of the items and of how the hypothesized structure can be assessed by
means of the selected IRT model. A test design is similar to an experimental
design. The cognitive components are determined either by the manipulation of
the item characteristics of the selected items, or by the manipulation of the tasks
that have to be performed by the subjects with the item stems. These two
possibilities of manipulation for a componential item design are equivalent to
what Embretson (1983) described as the method of complexity factors and the
method of subtask responses, respectively. The method of complexity factors
is strongly related to the linear logistic latent trait model (LLTM) of Fischer
(1973, 1983), where the item difficulty parameter of the Rasch model is
decomposed into a linear function of a common set of basic item difficulty
factors, describing the item difficulty with respect to the cognitive operations
needed in solving the item. The identification of the underlying cognitive
principles of item difficulty is only possible in an item set that is constructed on
the basis of these (hypothesized) principles. In the method of subtask
responses, subjects have to perform a series of subtasks with the same item
stem. Cognitive components intervening in the solution process of the total item
are identified from the responses to these subtasks. A verbal analogy task, for
example, can be decomposed into a rule construction and a response evaluation
subtask (Embretson, 1980), both designed to assess the corresponding covert
cognitive components involved in the total task of solving an analogy. Note that
the difference between the method of complexity factors and the method of
subtask responses has implications for the task instructions for the subjects,
which are the same for all items in the method of complexity factors and
different in the method of subtask responses.
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Componential IRT models can be classified on the basis of whether they
need data gathered according to the subtask method or whether a design of
the items in terms of their complexities suffices. For example, for the
application of the multicomponent latent trait model (Embretson, 1980,
1984) or the conjunctive Rasch model (Maris, 1995) subtask data are needed,
while for the multicomponent Rasch model (Stegelmann, 1983) or the
conjunctive IRT model (van Leeuwe & Roskam, 1991) a design of item
complexity suffices. Janssen and De Boeck (1997) described two other
general classification criteria for componential IRT models: (a) the type of
linkage rule, and (b) the weighting of the components. The linkage rule
describes the relationship between the components and the performance in
the total task. In compensatory models, a high ability on one component can
compensate for low abilities on other components in solving a task.
Conjunctive models on the other hand imply that a minimum competence is
needed in each component for solving a task. Examples of compensatory
models are the multidimensional two-parameter logistic model (Reckase &
McKinley, 1982) and the multicomponent Rasch model (Stegelmann, 1983).
Conjunctive IRT models are described by Embretson (1980, 1984), Maris
(1995), and van Leeuwe and Roskam (1991). The weighting of the
components refers to whether the components are equally weighted within
each item and over all items or whether a componential weight parameter is
included to measure the differential dependence of the composite item on the
components. Componential IRT models that are extensions of the Rasch
model (like, e.g., Maris, 1995; Stegelmann, 1983) do not have weight
parameters. For the moment, linkage models with weight paramaters for each
item can only be found among the compensatory IRT models.

Janssen and De Boeck (1997) showed on the basis of a heuristic
evaluation procedure that for the psychometric modeling of componentially
designed synonym tasks, models with item-specific componential weights
were clearly better than models with unweighted linkage. Compensatory and
conjunctive models had approximately equally good fit. Therefore, it is
expected that a confirmatory version of the multidimensional two-parameter
IRT model would result in good fit for the synonym data. It is the purpose of
the present article to analyze the data of Janssen and De Boeck with this
model. In the following, the multidimensional two-parameter IRT model and
its confirmatory version are discussed first. Next, it is discussed how different
confirmatory models can be compared with respect to their goodness of fit.
Finally, the componential hypothesis of the synonym tasks is described and
different confirmatory models for the data are presented.
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The Multidimensional Two-parameter IRT Model

In the (exploratory) multidimensional two-parameter (M2P) IRT model a
person j (j = 1, ..., J) is characterized by an ability parameter u

jk
 on each of

K dimensions. An item i (i = 1, ..., I) is characterized by a global item
difficulty b

i
 and a vector s

i
 of K discrimination parameters. The probability

of success on an item i by a person j is function of the difference between a
weighted sum of abilities and the item difficulty:

(1) P X fij j i i ik jk i

k

K

( ; , , ) .= = −
F
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I
KJ=

∑1
1

u b s u bs

The model assumes that depending on the item, a different weighted sum
of abilities is invoked to compete with item difficulty. In a strict extension of
the unidimensional two-parameter IRT model, one would expect b

i
 to be

equal to Ss
ik
b

ik
, but the item difficulty parameters cannot be identified on the

separate dimensions, but only on the scale of the weighted sum of all person
abilities, which is different from item to item. The item discrimination
parameters s

ik
 indicate the slope of the logistic regression lines relating the kth

latent ability dimension to the success probability. These parameters
correspond to the sensitivity of the item to the kth ability dimension and are
equivalent to the factor loadings of an item in the traditional factor model.

The function f  in Equation 1 can either be the logistic function, resulting
in the M2P logistic (M2P-L) model (McKinley & Reckase, 1983; Reckase &
McKinley, 1982), or the cumulative normal distribution, resulting in the M2P
normal ogive (M2P-NO) model (Bock & Aitkin, 1981; Bock, Gibbons, &
Muraki, 1988). The M2P-NO model is often called full-information item
factor analysis, as Takane and de Leeuw (1987) showed that the marginal
likelihood of the model is formally equivalent with the likelihood of the factor
analysis models for binary data (see, e.g., Muthén, 1984).

Confirmatory Versions of the M2P Model

When the M2P model is used in componential research, a confirmatory
version of it is needed in order be able to specify the hypothesized
componential test structure. In such a confirmatory version, Equation 1 is
supplemented with an item structure vector s

i
 of order K:

(2) P X f sij i j i i ik ik jk i
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Each s
ik
 is an indicator variable with a value of 1 indicating that the item i is

measuring the kth ability dimension and a value of 0 indicating that it is not.
Hence, the componential design of the test can be represented in the design
of the item discrimination parameters by constraining a subset of item
loadings to be zero. By consequence, the confirmatory M2P model specifies
the componential structure of the items with respect to the person abilities
involved. When the componential data are gathered according to the method
of subtasks, the difference between a total task item and its subtask items can
be modeled with the restriction that the separate dimensions involved in the
subtask items of a given type also intervene in the corresponding total task
item, but not in the subtask items of another type.

For the confirmatory M2P-L model, McKinley (1988, 1989, 1992; see
also McKinley & Kingston, 1988) developed the program TESTMAP. This
program uses the Marginal Maximum Likelihood estimation procedure
supplemented with the EM algorithm (Bock & Aitkin, 1981). A multivariate
normal distribution is assumed for the person ability parameters with the
means fixed to zero and the variance-covariance matrix of the ability
parameters equal to the identity matrix. Confirmatory M2P-L models can
also be specified within the general framework of Multidimensional
Polytomous Latent Trait (MPLT) models of Kelderman and Rijkes (1994),
within which models for dichotomous items form a subclass. However,
characteristic for the MPLT models is that the dependence of the item
responses on the latent traits has to be specified for all items by choosing for
each item i a priori scoring weights w

ik
 on each dimension k. The possible

values of w
ik
 are restricted to integers. The advantage of this kind of weights

is that the resulting models are all a member of the exponential family, and
that consequently sufficient statistics exist for the person parameters, so that
conditional maximum likelihood estimation for the item parameters is
possible. Unlike in the MPLT models, the values of the weights in the
confirmatory M2P model do not need to be specified in advance.

For the M2P-NO model, the program NOHARM of Fraser (1988) allows
to estimate both exploratory and confirmatory models. The estimation
method of the program makes use of bivariate information only (i.e., item
means and covariances). In contrast with NOHARM, the program
TESTFACT (Wilson, Wood, & Gibbons, 1984) uses the full information in
the response patterns for the estimation of the item parameters, but it can only
be used for exploratory analysis. Furthermore, Gibbons and Hedeker (1992)
developed full-information item bi-factor analysis, which consists of a K-
dimensional solution, with one general ability and K - 1 group or method
related ability dimensions. The bi-factor structure constrains each item to
load on the general factor and on only one of the K - 1 group factors. Hence,
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the model of Gibbons and Hedeker can be seen as a special case of the
confirmatory M2P-NO model, as full-information item bi-factor analysis
allows only for special item structure vectors, namely of the bi-factor type.

For the analysis of the componentially designed synonym tasks, a
versatile program was needed in order to be able to estimate different
confirmatory M2P models. Hence, only TESTMAP and NOHARM
remained as possible candidates. Both programs differ with respect to the
estimation procedure used, but, as a consequence of this, they also differ with
respect to the way the goodness of fit of different models are compared. It
will be explained in the following that the latter fact motivated us to estimate
the confirmatory M2P models for the synonym data with both programs. In
the next section, the two approaches to goodness-of-fit testing are described
first. Afterwards, a comparison is given.

Model Selection

In TESTMAP, the goodness-of-fit of different models are compared on
the basis of two criteria originally derived within the framework of
information theory, namely Akaike’s Information Criterion (AIC; see, e.g.,
Akaike, 1977) and its Consistent version (CAIC; Bozdogan, 1987). Both
model selection criteria choose the best approximating model among a set of
competing models for a given data set taking model complexity into account.
In contrast with likelihood ratio tests, the competing models do not need to be
nested. The AIC equals

(3) AIC = -2ln(L) + 2m,

where ln(L) is the natural logarithm of the likelihood in the maximum
likelihood solution and m denotes the number of estimated parameters. The
first term of the sum is an index of the distance between the estimated model
and the true model: the greater the likelihood of the solution, the closer the
fitted model is presumed to approximate the true model, but the lower the
negative loglikelihood. The second term of the sum constitutes a penalty for
model complexity. Hence, the AIC has to be minimized to choose the optimal
(and most parsimonious) model from a set of models. Bozdogan developed
an extension of the AIC, called the consistent AIC or CAIC. It was derived in
order to make the AIC asymptotically consistent and to penalize
overparameterization more stringently. The CAIC equals:

(4) CAIC = -2ln(L) + m[ ln(n) + 1],
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with n denoting the sample size. Minimization of the CAIC generally leads
to simpler models than those obtained by minimizing the AIC.

In NOHARM, the goodness of fit of different models is based on the
residual covariances of the model. McDonald and Mok (1995) adopted the
unweighted least squares (ULS) goodness-of-fit index of Tanaka (1993) for
factor analysis for multidimensional IRT models:

(5) g
ULS

 = 1 - [Tr(R2)]/[Tr(C2)],

where C is the sample item covariance matrix and R the item residual
covariance matrix. g

ULS
 is a descriptive measure of goodness of fit, indicating

how much of the item covariances is explained by the model. As it does not
take model complexity into account, one may expect the measure to be
related to the number of parameters in the model.

McDonald and Marsh (1990) warned against the use of the AIC as a way
of testing a model in the context of structural equation models. The value of
the AIC would depend on sample size, like that of the conventional chi-square
test. As a consequence the AIC would tend to prefer saturated models in very
large samples and models with few estimated parameters in very small
samples. Nevertheless, McKinley (1989) successfully applied the AIC and
CAIC in a small simulation study with confirmatory M2P-L models.
McDonald and Mok (1995) argued that further simulation studies involving
the resampling of real data at different sample sizes are needed to resolve the
issue of the quality of the (C)AIC for multidimensional IRT models. To make
sure about our results, we decided to use both the two information criteria and
the g

ULS
 statistic. The AIC and CAIC are used as measures of relative

goodness of fit among a set of competing models. The g
ULS

 statistic is used as
a measure of the absolute degree of approximation of the model to the data.
As the goodness-of-fit measures to be used are based on two different
estimation methods (and computer programs), the correspondence between
the estimated parameters will be investigated as well.

The Componential Structure of Synonym Tasks

Previous studies (Butter, De Boeck, & Baele, 1992; Janssen, De Boeck,
& Vander Steene, 1996; Janssen, Hoskens, & De Boeck, 1993) have
investigated the componential structure of an open synonym task (i.e., a task
in which a synonym must be provided for a stimulus word). The open
synonym task was considered a total task, this is a composite task to be
decomposed into subtasks. It was hypothesized that solving an item of the
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open synonym task is based on the generation of synonym candidates and the
subsequent or concurrent evaluation of these synonym candidates on their
synonymy with the stimulus word. Two subtasks were designed to identify
the two cognitive components of the open synonym task. In the generation
subtask, respondents listed all words that came to their mind while searching
for a synonym. In the evaluation subtask, the respondents had to select the
“true” synonym(s) of a stimulus word from a list of four words. The three
distractors were selected from the most frequently provided words in the
generation subtask. Table 1 contains an example of the open synonym task
and the two subtasks for the stimulus word “foggy”.

On the basis of structural equation modeling using the sum scores in the
three tasks, Janssen et al. (1996) showed that the generation component
ability is primarily related to verbal fluency abilities, while the evaluation
component ability is primarily related to verbal comprehension abilities.
Moreover, evidence was provided that these two component abilities could
account for the correlations of the open synonym task with other ability
measures. In an analysis based on the proportion of correct responses on the
items, Butter, De Boeck, & Baele (1992) provided some evidence for the
differential validity of the subtask difficulties. The items of the evaluation
subtask were less difficult, the more similar the stimulus word was to the
correct response, according to ratings of similarity in meaning, use, and
associations. The item difficulty of the generation subtask was also
determined by this similarity factor. However, in contrast with the evaluation
subtask, the item difficulty for the generation subtask was also determined by
a word availability factor, which summarized the rated power of the stimulus
word to evoke contexts, images, and associations. Highly available stimulus
words were less difficult for generating a synonym.

Table 1
Example of the Three Synonym Tasks for the Stimulus Word “Foggy”

Task Example

Generation Which words come to your mind while searching for a
synonym for “foggy”?

Evaluation Which of these words do you consider to be a
synonym for “foggy”?
a) damp     b) cloudy     c) blurred    d) hazy

Open Synonym Give a true synonym for “foggy”.

Note. The original tasks were presented in Dutch.
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Confirmatory Models for the Synonym Tasks

In the present article, the componential hypothesis will be studied making
use of the confirmatory M2P model. The item structure for different
componential models are presented in Table 2. The models will be described
first. Afterwards, an interpretation is given.

In the initial confirmatory model, it is hypothesized that the items of the
generation and evaluation task each measure a separate ability dimension, and
that both ability dimensions are involved in the open synonym task. This
initial confirmatory model is labeled model 2D_ge in Table 2, as it is a two-
dimensional model that restricts the items of the generation and of the
evaluation task each to one dimension. Model 2D_ge assumes that the two
ability dimensions are uncorrelated. This assumption of orthogonal ability
dimensions is always made in TESTMAP, as it assumes a multivariate normal
distribution for the ability parameters with variance-covariance matrix equal
to the identity matrix for the MML-procedure. However, when generation
and evaluation are in fact correlated, the solution of model 2D_ge cannot
identify these two dimensions correctly. NOHARM on the other hand offers
the possibility to estimate models with orthogonal or with correlated ability
dimensions. The estimation of a confirmatory model with correlated ability
dimensions for the item structure vectors of model 2D_ge will be labeled as
model 2D_ge(r). Models 2D_ge and 2D_ge(r) estimated with NOHARM, can
be compared for their goodness of fit to decide upon generation and
evaluation being correlated or not.

For comparative reasons, several other componential models were
formulated. First, also the unrestricted one-, two-, and three-dimensional
M2P models were estimated. These models are labeled as model 1D, model
2D, and model 3D, respectively. They correspond to confirmatory M2P
models with for all items a unit vector of order K for s

i
 (yielding in fact an

exploratory analysis). Second, two other confirmatory two-dimensional

Table 2
Item Structure Vectors for the Confirmatory Models for the Synonym Tasks

Model

Task 2D_ge 1D 2D 3D 2D_e 2D_g 3D_ge

Generation 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1
Evaluation 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1
Open Synonym 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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models were estimated. In model 2D_e, the items of the evaluation task are
restricted to measure only one dimension, whereas the items of the generation
task and of the open synonym task are assumed to measure both dimensions.
This model guarantees that one dimension coincides with the evaluation
items. Model 2D_g is the complement of model 2D_e in that it restricts the
items of the generation task to be unidimensional, but not the items of the
other two tasks. Items from the evaluation task and from the open synonym
task are supposed to measure both dimensions. This model guarantees that
one dimension coincides with the generation items. Finally, a three-
dimensional confirmatory model was estimated, which is labeled model
3D_ge. The first two dimensions comprise the initial two-dimensional model
2D_ge, with a specific generation and evaluation dimension as in model
2D_ge, but with a general third dimension in addition.

The models in Table 2 differ with respect to the dimensionality of the
latent space of the synonym tasks, the supposed componential structure of
the items, and whether the abilities involved in the generation and evaluation
subtask are correlated or not. Note that models 2D_g, 2D_e, and 3D_ge do
not only differ from model 2D_ge with respect to their componential
structure, but also with respect to whether a correlation is allowed between
the abilities involved in the generation and evaluation subtask. Models 2D_e,
2D_g, and 3D_ge do show a componential overlap between the generation
and evaluation subtasks, and, as a consequence, the subtasks are assumed to
correlate, even within the ortohogonal structure of TESTMAP. Models 2D_e
and 2D_g have in common that one type of subtask is related with only one
dimension while the complementary subtask can load on two dimensions. For
model 2D_e, this results in a correlation over persons between the evaluation
ability and the logit of the probability of success in an item i of the generation
task. This can be derived analytically and from the geometric properties of the
model:

(6) r(u
j2
, s

i1
u

j1
 + s

i2
u

j2
 - b

i
) = r(u

j2
, s

i1
u

j1
 + s

i2
u

j2
)

=
s

s s

si

i i

i

i

2

1
2

2
2

2

+
=

( (s

= cos(a
i
)

with (s
i
( being the vector length of s

i
 and a

i
 being the angle of s

i
 with the

evaluation ability axis. The calculation is based on the assumption that the
variance-covariance matrix of the ability parameter vector is the identity
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matrix. This assumption is always made in TESTMAP and can be made in
NOHARM when an orthogonal solution is chosen. For model 2D_g, the
correlation over persons between the generation ability and the logit of the
probability of success in an item of the evaluation task can be derived
similarly. This correlation equals the cosine of the angle of s

i
 of an item of the

evaluation task and the generation ability axis.
Note that in Equation 6 the correlation is estimated on the basis of one

item. An estimate of the correlation over all the items can be obtained by
taking the cosine of the mean of the angles a

i
. We calculated a weigthed mean

angle over the items with as weights the vector length (s
i
( of the items of the

subtask involved:

(7)
a

a

= =

=

∑

∑

( )( (

( (

s

s

i i

i

I

i

i

I
1

1

with a
i
 being the angle of s

i
 of an item i with the reference axis. The weighting

is done in order to diminish the influence of points near the origin, where
variation in the angle between s

i
 and the reference axis is less meaningful.

In Model 3D_ge, the general factor can account for the intercorrelations
between the two types of subtasks. It can be shown that the correlation over
persons between the logit of the probability of success in an item i of the
generation task and the logit of the probability of success in an item i9 of the
evaluation task equals the product of the correlations of the ability of the third
dimension with the logit of item i of the generation task and with the logit of
item i9 of the evaluation task:

(8) r(s
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u

j1
 + s
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u

j3
 - b

i  
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i92
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)

with a
i
 (and a

i9
) now being the angle of s

i
 (or s

i9
) with the third axis.

Calculating the latter product using the cosine of the weighted mean angles for
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both subtasks (cf. Equation 7) gives an estimate over all items of the
correlation between the abilities involved in the generation subtask and in the
evaluation subtask.

Note that it is not necessary to estimate models 2D_g, 2D_e, and 3D_ge
with correlated ability dimensions in NOHARM (like with model 2D_ge(r) for
model 2D_ge), as these models already allow for a correlation between the
two subtasks. In fact, the goodness of fit of these models and their
counterparts with correlated ability dimensions as estimated with NOHARM
were exactly the same.

Method

As the present article reanalyzes the data of Janssen and De Boeck
(1997), this method section only summarizes the most relevant aspects of the
method section in their article.

Items

Janssen and De Boeck (1997) compiled a list of 120 Dutch stimulus words
paired with a synonym according to the dictionary. The list of 120 items was
divided at random into two lists of 66 word pairs, with an overlap of 12 items. The
two lists and their overlap each consisted of an equal number of nouns, verbs, and
adjectives. The stimulus words of the three grammatical word classes were
grouped on separate sheets of paper. This grammatical classification of items was
carried out in order to avoid certain ambiguities in Dutch where some words can
refer to a verb as well as to the plural of a noun (e.g., “dingen” meaning both “to
compete for” and “things”). The order of presentation of word classes was
randomized across subjects and tasks. The order of the stimulus words within a
word class remained the same in the three tasks used.

Respondents

Pupils from the last two grades from six different Dutch-speaking Belgian
schools of general secondary education participated during school time. Their
ages varied between 16 and 18. Of the subjects answering the items of the
first list, 218 completed all three tasks. For those working with the items of
the second list, this number was 258. Seven subjects were discarded as they
had not followed the instructions of the evaluation task. Hence, the final
number of subjects was 212 for List 1, and 257 for List 2.
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Procedure

All subjects completed the generation task first. After about six weeks,
the open synonym task was administered. The evaluation task was presented
in a third session about six weeks after the open synonym task, but due to
practical circumstances, about half of the subjects completed the evaluation
task in the second session, right after the open synonym task. The time
intervals between the tasks were needed to control as much as possible for
memory effects between the tasks, and to allow for the construction of the
evaluation task (as the response alternatives were based on the responses
given to the generation task). Memory effects are especially to be feared
among the open-ended format tasks, and from a multiple-choice format to an
open-ended format. That is why in each case the generation task was
separated from the open synonym task by at least six weeks and why the
evaluation task always came last.

Results

Preliminary Remarks

Note that the number of respondents is quite small for the estimation of an
M2P model. However, in the present article, we were not so much interested
in stable parameter estimates of individual items, but in the general pattern of
the loadings of the items on the three synonym tasks and in the goodness of fit
of the different models. Moreover, the item parameters were estimated for
research purposes only, and were not used for the classification of the subjects.
Finally, as a way of cross-validition (but also because of practical restrictions on
the number of items in the computer programs), the different confirmatory
models were estimated on six subsets of the whole data set. The six data sets
contain the data for the three synonym tasks for the adjectives, nouns, or verbs
from List 1 or List 2, respectively. Each data set contains 66 items (namely 22
stimulus words × 3 synonym tasks) in principle, but the items that were failed
by all respondents in at least one task were excluded for the three tasks. For the
adjectives of List 1, and the nouns, verbs, and adjectives of List 2, 22 items
remained for the three synonym tasks. This number was 21 for the nouns of
List 1, and 19 for the verbs of List 1.

Comparison between TESTMAP and NOHARM

The different confirmatory M2P models presented in Table 2 were all
estimated with TESTMAP and NOHARM. Apart from the model
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specifications, NOHARM does not require any specific settings in the
program, but the TESTMAP program requires the user to specify an upper
bound for the estimates of the discrimination parameters. This maximum was
set to the value specified in the manual (being 1.5) for all the analyses.
Because of this difference, and because TESTMAP works on the logistic
scale and NOHARM on the normal ogive scale, the correspondence between
the estimated parameters of each model was expressed as a correlation
coefficient calculated over all the items in the data set for the six data sets
separately.

Correlations high in the nineties were found between the item difficulty
parameters for the same models estimated by the two programs, but also
across different models, regardless of their dimensionality and of whether the
estimation was done with the same or with different programs. As Table 3
shows, the picture was different for the item discrimination parameters.
Note that for model 2D and 3D, the correlations were calculated not only for
the corresponding dimensions, but also for the cross-pairs of the dimensions.
These cross-dimenson correlations are not given for the other models, as the
constraints in the item structure vectors forced the dimensions to be well
identified. For the models with a fixed zero loading for one type of subtask,
the subtask items with the zero loadings were left out of the calculation of the
correlation coefficient for the discrimination parameters for that dimension.
The correlations between the item discrimination parameters estimated by
TESTMAP and by NOHARM were quite satisfying for the more restrictive
models, that is, for models with restrictions either on the number of
dimensions, or on the subtask loadings. The correlations were high for model
1D and for model 2D_ge, but less good for model 2D and the three-
dimensional models. While it was still possible to link the dimensions of model
2D between NOHARM and TESTMAP on the basis of their correlations, this
was no longer possible for all data sets in model 3D. For example, for the
adjectives of List 1, the first dimension of NOHARM seems to be
predominantly related to the third dimension of TESTMAP, while the second
and third dimension of NOHARM are both mostly related to the first
dimension of TESTMAP. Note also that the correlations among the
discrimination parameters were lower for model 2D_g than for model 2D_e,
in particular for the second dimension in some data sets.

As a conclusion one can state that the correspondence between the item
parameter estimates of TESTMAP and NOHARM was reasonably high,
especially for models with a restricted number of parameters. The
correspondence between the two estimation methods was the more
encouraging since data of a relatively small number of subjects were used.
Hence, it seems justified to use the goodness-of-fit statistics derived from
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TESTMAP and NOHARM together to judge the quality of a model. Note that
the correspondence found between the two estimation methods supports the
conjecture of McDonald and Mok (1995) that “... bivariate analysis of binary
data seems likely to provide adequate evidence of dimensionality as

Table 3
Correlations Between the Estimated Item Discrimination Parameters from
NOHARM and TESTMAP

Nouns Verbs Adjectives

Model Dimensiona List 1 List 2 List 1 List 2 List 1 List 2

1D 1 - 1 .96 .90 .93 .96 .96 .98
2D 1 - 1 .74 .79 .71 .31 .53 .92

2 - 2 -.55 .78 .31 -.32 -.09 .57
1 - 2 .69 .34 .56 .94 .74 .30
2 - 1 .53 -.41 -.56 .41 .89 -.74

2D_ge 1 - 1 .89 .96 .80 .87 .81 .82
2 - 2 .88 .90 .81 .94 .86 .95

2D_g 1 - 1 .87 .87 .94 .93 .97 .95
2 - 2 -.10 .79 .59 .79 .63 -.05

2D_e 1 - 1 .73 .96 .52 .66 .82 .90
2 - 2 .88 .84 .96 .94 .96 .99

3D 1 - 1 .64 .30 .75 .38 .26 .83
1 - 2 .71 .24 .47 .48 .40 .44
1 - 3 .42 .72 .68 .80 .66 .65
2 - 1 .59 -.57 .20 -.21 .79 -.73
2 - 2 -.35 .77 .17 .09 .37 .36
2 - 3 .23 -.18 .43 .05 .45 -.36
3 - 1 -.31 .56 -.27 .75 .53 .60
3 - 2 -.09 .47 .49 -.41 -.08 .32
3 - 3 .70 -.65 .14 -.10 .07 -.15

3D_ge 1 - 1 .75 .93 .25 .63 .85 .85
2 - 2 .49 .29 .56 .90 -.42 .77
3 - 3 .85 .79 .90 .91 .92 .97

a When two dimensions are mentioned, the first refers to the NOHARM estimate and the
second to the TESTMAP estimate.
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compared with full-information methods” (p. 23). In fact, Knol and Berger
(1991) showed in a simulation study that with respect to the goodness of
recovery of the item parameters in exploratory analyses of multidimensional
data, NOHARM performed as well as TESTFACT, which uses a full-
information method for estimating exploratory M2P-NO models.

Model Selection

Table 4 presents the model fit according to the AIC and CAIC for the
different models for the six data sets as estimated by TESTMAP and the
values of the g

ULS
 as estimated by NOHARM. The models are arranged

according to their number of model parameters m. Remember that a lower
value indicates better fit for the (C)AIC, and a higher value indicates better fit
for the g

ULS
. The order of the goodness of fit is indicated between parentheses

for each statistic and for each data set.
On the basis of the values of the AIC, model 2D_ge always came last,

with as an exception the nouns of List 2 at rank 5. In the median ranking of
the AIC values over the six data sets, model 3D was the best, followed by
3D_ge, 2D_e, 2D, 1D, 2D_g, and 2D_ge. The values of the CAIC resulted in
an ordering of the models that is very different from the ordering by the AIC,
due to their difference in penalty for overparameterization. On the CAIC, the
one-dimensional model always came out as the best model. Model 2D_e had
a median rank of 2. The median rank of models 2D_ge and 2D_g were 3 and
3.5, respectively. The unconstrained two-dimensional model (2D) and the
two models with three dimensions (3D_ge and 3D) were always ranked last
in the same order. Note that the values of the CAIC were generally higher for
an increasing number of parameters, but model 2D_e was an exception, as it
was better (lower CAIC) than model 2D_ge. The g

ULS
 statistics were

reasonably high. Moreover, they were about equally high across data sets
(although the values for the verbs of List 2 were somewhat lower),  and the
ordering of the models according to the g

ULS
 statistics was remarkably similar

across data sets. In general, model fit on the basis of the g
ULS

 was better, the
more parameters there were in the model, but model 2D_ge was a notable
exception as its fit was worse than for model 1D. Adding a correlation
between the latent dimensions of model 2D_ge, hence, resulting in model
2D_ge(r), gave a better fit, especially for the adjectives of List 1. Among the
two-dimensional models, model 2D always had the best fit, but model 2D_e
was a consistent and close second.

A surprising finding across the three goodness-of-fit measures was that
the initial model 2D_ge did not fit well. The AIC gave model 2D_ge the last
place in the majority of data sets and the g

ULS
 statistics indicated that model
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Table 4
Model Fit for the Data Sets of List 1 (N = 212) and List 2 (N= 257)

List 1 List 2

Data Set Model m AIC CAIC g
ULS

m AIC CAIC g
ULS

Nouns 1D 126 10686 (5) 11235 (1) .73 (7) 132 13907 (7) 14507 (1) .79 (7)
2D_ge 147 10793 (7) 11434 (3) .68 (8) 154 13862 (5) 14562 (3) .78 (8)
2D_ge(r) 148 - - .74 (6) 155 - - .80 (6)
2D_g 168 10745 (6) 11477 (4) .75 (5) 176 13869 (6) 14670 (4) .81 (5)
2D_e 168 10650 (2) 11382 (2) .77 (4) 176 13737 (3) 14538 (2) .84 (4)
2D 189 10672 (3) 11495 (5) .79 (2) 198 13814 (4) 14714 (5) .84 (3)
3D_ge 210 10677 (4) 11592 (6) .79 (3) 220 13728 (2) 14728 (6) .85 (2)
3D 252 10645 (1) 11743 (7) .82 (1) 264 13635 (1) 14836 (7) .88 (1)

Verbs 1D 114 11210 (3) 11706 (1) .74 (7) 132 16599 (5) 17200 (1) .66 (7)
2D_ge 133 11259 (7) 11838 (2) .70 (8) 154 16664 (7) 17365 (2) .63 (8)
2D_ge(r) 134 - - .74 (6) 155 - - .67 (6)
2D_g 152 11214 (4) 11876 (4) .76 (5) 176 16565 (3) 17365 (3) .69 (5)
2D_e 152 11183 (1) 11845 (3) .77 (4) 176 16570 (4) 17370 (4) .69 (4)
2D 171 11216 (5) 11961 (5) .78 (3) 198 16622 (6) 17523 (5) .71 (3)
3D_ge 190 11205 (2) 12033 (6) .79 (2) 220 16542 (2) 17543 (6) .71 (2)
3D 228 11231 (6) 12224 (7) .81 (1) 264 16533 (1) 17734 (7) .75 (1)

Adjectives 1D 132 11970 (5) 12545 (1) .73 (7) 132 16141 (6) 16741 (1) .82 (7)
2D_ge 154 12101 (7) 12771 (4) .61 (8) 154 16243 (7) 16944 (4) .79 (8)
2D_ge(r) 155 - - .74 (6) 155 - - .82 (6)
2D_g 176 12002 (6) 12768 (3) .76 (5) 176 16118 (5) 16919 (3) .83 (5)
2D_e 176 11935 (3) 12702 (2) .77 (4) 176 16038 (3) 16839 (2) .84 (4)
2D 198 11913 (1) 12775 (5) .78 (3) 198 16058 (4) 16958 (5) .85 (3)
3D_ge 220 11962 (4) 12921 (6) .79 (2) 220 16029 (2) 17030 (6) .86 (2)
3D 264 11929 (2) 13079 (7) .81 (1) 264 16026 (1) 17227 (7) .87 (1)

Copyright © 2000 All Rights Reserved



R. Janssen and P. De Boeck

262 MULTIVARIATE BEHAVIORAL RESEARCH

1D with less parameters was better than model 2D_ge. A plausible
explanation for the latter finding is that model 2D_ge does not allow for a
correlation between generation and evaluation. With an angle between
generation and evaluation that is smaller than 45°, it can be understandable
that model 1D had a better fit, since in that model both subtasks are located
on one dimension. The need for a correlation between generation and
evaluation was also shown in the better fit of model 2D_ge(r) in comparison
with model 2D_ge in NOHARM.

As to the issue whether a higher dimensionality is needed, the AIC and
CAIC criteria diverged. The three-dimensional models were favored by the
AIC statistic, as they mostly appeared in the first ranks, whereas in the
ordering by the CAIC, they appeared always on the last positions. The g

ULS

statistic for the NOHARM output showed, however, that only the
unconstrained model 3D was really better than the two-dimensional models.
It was also shown in the previous section that the solution of model 3D was
less stable across NOHARM and TESTMAP. Hence, overall a two-
dimensional solution seems to be preferred.

Among the two-dimensional models there was one, namely model 2D_e,
which was doing well on both the AIC, CAIC, and the g

ULS
 statistic.

Combining the orderings of the AIC and CAIC, model 2D_e even appears to
be the best choice for the present data sets. It was better than the three-
dimensional models (on the CAIC) and the one-dimensional model (on the
AIC). With NOHARM, model 2D_e was the best two-dimensional model
with constraints, with about an equal goodness of fit as model 2D.

Model 2D_e differs from the initial model 2D_ge with respect to the
supposed componential structure. In contrast with model 2D_ge, the one
latent dimension measured by the evaluation task also intervenes in the
generation subtask in model 2D_e, meaning that generation is not pure
generation but also involves evaluation. As a consequence, model 2D_e
allows for a correlation between the generation and evaluation subtasks. The
importance of the componential structure can be seen in the fact that model
2D_g generally showed worse fit than model 2D_e, especially on the g

ULS

statistic. It was also shown in the previous section that model 2D_g seemed
to result in a less stable solution. An explanation for the difference in fit
between model 2D_e and 2D_g can be found in that in model 2D_e, the
evaluation task is defined as a subset of the generation task with respect to the
abilities (dimensions) involved. This is more plausible than the generation
subtask being a subset of the evaluation task (as in model 2D_g), as
respondents want their responses to be of some quality. On the other hand,
evaluating what is given, like in the evaluation subtask, does not require any
generation activity. Note also that model 2D_e is in accordance with a
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response-format effect, as the open synonym task and the generation task are
alike in response format and with respect to their item structure vectors, and
both tasks differ on these aspects from the evaluation task.

A Further Look at Model 2D_e

Item Discrimination Parameters

Table 5 presents the averages over the six data sets of the means and
standard deviations of the obtained item discrimination parameters for model
2D_e as obtained from TESTMAP. The general pattern of these results was
quite comparable with the results obtained from NOHARM. The mean
discrimination parameters showed relatively comparable values on the two
subtasks and on the open synonym task. However, the contribution of the
generation dimension in comparison with the evaluation dimension was
higher for the generation subtask (.31 and .38) than for the open synonym
task (.26 and .39). Hence, the difference between the generation and open
synonym task consists in the importance of the generation dimension. These
findings are important as the values of the discrimination parameter that are
not constrained to zero are estimated freely, so that one still has to look at the
values in order to check whether the componential hypothesis that is
formulated with the item structure vectors can be found in the estimated
parameters. Note that the (mean) values of the discrimination parameter are
relative to the identification restrictions with respect to the variance of the
person ability parameters and to the fixing of the maximum estimate at 1.5.

The variance of the discrimination parameters was rather high, the
values of the standard deviations being about equal across tasks and
dimensions (see Table 5). The high variability is probably due to the small
sample size, resulting in the individual parameter estimates not being very

Table 5
Mean TESTMAP Discrimination Parameters (and Standard Deviations) for
Model 2D_e.

Task 1 2

Generation .31 (.31) .38 (.35)
Evaluation 0 .33 (.32)
Open Synonym .26 (.30) .39 (.36)
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reliable. Only the global solution should be interpreted and not the individual
discrimination parameter estimates. In fact, the solutions obtained from
TESTMAP (but also from NOHARM) even contained some negative values
for the estimated discrimination parameters.

Correlation Between Generation and Evaluation

For the items of the generation subtask the weighted mean angle was
calculated with the evaluation subtask dimension (cf. Equation 7) in order to
get an estimate of the correlation between the generation subtask and the
evaluation ability (cf. Equation 6). The weighted mean angle varied between
37° (adjectives of List 2) and 46° (verbs of List 1). Averaged over the six data
sets, the weighted mean angle is 41° with a standard deviation of 3° for the
means in the six data sets. This mean angle corresponds with a correlation of
.75 between generation and evaluation. The estimate of the correlation
coefficient between the two latent dimensions in model 2D_ge(r) by
NOHARM was .87 on the average over the six data sets. Note that these
correlations must be considered correlations between perfect measures (i.e.
without measurement error), since they are defined from an angle or from the
latent ability dimensions.

These correlations are too high for a reliable differentiation between
generation and evaluation. The high correlation may be caused by a common
underlying verbal ability. In fact, Janssen et al. (1996) found that in a
structural equation solution for synonym tasks and reference tests, the
evaluation factor, on which the evaluation and open synonym task loaded,
correlated .57 with the generation-fluency factor, on which the generation
task, the open synonym task, and two verbal fluency measures loaded.
Another explanation of the high correlation can be found in the design of the
present study: The same stimulus words were used for the three synonym
tasks. In another study by Janssen and De Boeck (1996), the effect of
common stimulus words was investigated using structural equation modeling.
They found that repeating stimulus words across tasks enhanced the
correlations among these tasks, especially when the tasks shared a common
item format.

Item Difficulty Parameters

We also looked at the estimated item difficulty parameters in model 2D_e
as obtained from TESTMAP. Again, the results were comparable with those
obtained from NOHARM. On the average, the items of the evaluation
subtask were the easiest, with a mean over the six data sets of -.66. The items
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of the generation subtask were most difficult (M = 1.00), closely followed by
the items of the open synonym task (M = .89). The standard deviations of the
item difficulty parameters of the items of one task varied between .72
(evaluation, adjectives of List 1) and 1.68 (open synonym, nouns of List 1).

Because the same stimulus words were used in the three tasks, the item
difficulty of the open synonym task could be regressed on the item difficulty
of the generation and evaluation subtask. The componential hypothesis
implies that the open synonym task difficulty can be explained reasonably
well from the generation and evaluation difficulties. The fact that the
componential hypothesis can be tested also with respect to difficulties, is an
advantage of componential IRT modeling in comparison with common
factor-analytic methods. The resulting squared multiple correlation
coefficients varied between .81 and .97 for the six data sets. The regression
weight of the generation subtask item was always significant with p < .001.
For the evaluation subtask items a significant regression weight was obtained
for two of the six data sets with p < .01 and for four data sets with p < .10.
These results indicate that in general both generation and evaluation
contribute to the difficulty of the open synonym task. The fact that the
contribution of evaluation is smaller can be understood from model 2D_e, as
in that model generation also incorporates evaluation. Hence, the results of
the regression analysis on the item difficulty are in line with the particular
componential structure of the preferred model.

Discussion

As a general conclusion, one can say that the componential hypothesis of
the synonym tasks was corroborated on the basis of the confirmatory M2P
IRT model. The preferred model 2D_e showed a relatively good
approximation to the data, with a mean g

ULS
 statistic of .78 when averaged

over the six data sets. According to that model, the generation subtask and the
open synonym task turned out to be more similar in the abilities involved than
was initially conceived of in the componential hypothesis. Also, the results of
the item difficulty parameters were in line with this finding. Our results
therefore indicate that the confirmatory M2P model can be considered a
valuable tool in cognitive, componential research.

On a methodological level, several interesting results were obtained.
First, a limitation of the study may be its small sample size. Indeed, the small
sample size probably gave rise to less stable solutions at the item parameter
level. However, given the cross validation with the six data sets and the
correspondence between the two estimation methods, the global results
seemed to be reliable. Hence, it seems that for research purposes, the
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confirmatory M2P model can be used even with a relatively small number of
observations. Second, the present research confirms the robustness of the
bivariate information methods in comparison with the full-information
methods. Both estimation methods resulted in about equivalent parameter
estimates. Moreover, the ordering of the confirmatory models by the
goodness-of-fit measure of NOHARM was very consistent across data sets,
while the AIC and CAIC showed more fluctuations across data sets, probably
resulting from minor differences in the data sets. Third, it was shown in the
present article that indicators of relative fit and absolute goodness of
approximation can be combined for model selection. Finally, it was also
shown how an estimate of a correlation could be obtained, even within an
orthogonal solution.

The present article shows how multidimensional IRT models can
complement both an experimental approach concentrated on the effect of
task manipulations, and a factor-analytic approach aiming at modeling the
structure in individual differences. Davison and Skay (1991) argued in favor
of multidimensional scaling as a viable alternative to factor analysis for the
analysis of person by item data in a multidimensional space. They indicated
that multidimensional scaling stresses variation in task content, whereas
factor analysis emphasizes (co)variation over individuals. The present article
suggests that multidimensional IRT models can integrate both aspects. These
models can be used to differentiate between different componential
hypotheses in a multidimensional space, taking into account the structure of
individual differences and without neglecting differences in item difficulty
related to task content.
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