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Qualitative interaction trees:
a tool to identify qualitative
treatment–subgroup interactions
Elise Dusseldorpa,b*† and Iven Van Mechelenb

When two alternative treatments (A and B) are available, some subgroup of patients may display a better
outcome with treatment A than with B, whereas for another subgroup, the reverse may be true. If this is the
case, a qualitative (i.e., disordinal) treatment–subgroup interaction is present. Such interactions imply that some
subgroups of patients should be treated differently and are therefore most relevant for personalized medicine. In
case of data from randomized clinical trials with many patient characteristics that could interact with treatment
in a complex way, a suitable statistical approach to detect qualitative treatment–subgroup interactions is not
yet available. As a way out, in the present paper, we propose a new method for this purpose, called QUalitative
INteraction Trees (QUINT). QUINT results in a binary tree that subdivides the patients into terminal nodes on
the basis of patient characteristics; these nodes are further assigned to one of three classes: a first for which A is
better than B, a second for which B is better than A, and an optional third for which type of treatment makes no
difference. Results of QUINT on simulated data showed satisfactory performance, with regard to optimization
and recovery. Results of an application to real data suggested that, compared with other approaches, QUINT
provided a more pronounced picture of the qualitative interactions that are present in the data. Copyright ©
2013 John Wiley & Sons, Ltd.
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1. Introduction

1.1. Problem

When several treatment alternatives are available for a certain disease, an important question is which of
these alternatives is most efficacious. The gold standard method to answer this question is a randomized
controlled trial (RCT). In this paper, we focus on the situation in which two treatment alternatives are
available (A and B) and a two-arm RCT has been performed. If, in the population, the mean outcome of
the patients receiving A is better than the one of the patients receiving B, A is seen as more efficacious
or effective than B.

Beyond the question of general efficacy or effectiveness, a frequently occurring question is whether the
difference in effect between the two treatments is equal for all subgroups of patients. A subgroup or sub-
set analysis may identify that this is not the case (Figure 1a). In formal terms, such a situation is called a
treatment–subgroup interaction, subgroup–treatment effect interaction [1], or treatment–covariate inter-
action [2]. The patient characteristic(s) defining the subgroups then are called ‘moderators of treatment
effects’ [3] or ‘treatment effect modifiers’. We would like to emphasize that each of the subgroups in
Figure 1 (subgroup a, b, c, and d) may be defined by several patient characteristics. In general, sub-
group analyses identify the differential efficacy of a treatment, starting from the idea that the size of the
treatment effect may differ across individuals. We use the term subgroup analysis to refer to all types of
analysis involving subgroups of patients who are assigned to treatments (in line with [1]).
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Figure 1. Two examples of treatment–subgroup interactions (N, treatment A; ı, treatment B): (a) quantitative
interaction with respect to the treatment variable and (b) qualitative interaction.

A special type of treatment–subgroup interaction occurs if for some subgroups of patients, one treat-
ment is better than the other, whereas for other subgroups, the reverse is true. Such a situation is shown
in Figure 1b. This type of interaction is called disordinal with respect to the treatment variable T

[4, 5]. Such interactions, where the difference in treatment effect in one subgroup has a different sign
than in another subgroup, are also referred to as qualitative interactions [2], as opposed to quantitative
(or ordinal) interactions, where the difference in treatment effects has the same sign in all subgroups
(Figure 1a). Qualitative interactions, unlike a number of quantitative interactions, cannot be removed
by the choice of a different model [2] or by monotonic transformations of the outcome variable. An
example of a qualitative interaction has been reported by Behrendt and Gehan [6] in a study on adults
with acute leukemia. From this study, it appeared that experimental treatment (amsocrine plus OAP,
i.e., a combination of vincristine, cytosine arabinoside, and prednisone) is superior to standard treatment
(adriamycin plus OAP) in patients with unfavorable prognosis and inferior to standard treatment in
patients with favorable prognosis.

In the presence of a qualitative treatment–subgroup interaction, the question ‘Which treatment is bet-
ter, A or B?’ becomes meaningless and should be replaced by ‘Which treatment is best for which kind
of patients?’ [4, 7]. The moderator variable(s) contributing to the qualitative interaction(s) then iden-
tify for whom and under which circumstances treatment A is better than B and for whom the reverse
is true. As such, they represent important patient characteristics that may be used in the future to set
up an optimal treatment assignment strategy to support healthcare decision makers [7]. It is, therefore,
essential to uncover qualitative treatment–subgroup interactions with an appropriate statistical method.
The development of such a method is the key challenge we want to address in the present paper.

In this development, our primary focus will be on a typical RCT context that involves a large number of
potentially relevant moderator variables, without clear a priori hypotheses on the nature of the subgroups
involved in qualitative treatment–subgroup interactions, and with the subgroups possibly being defined
in terms of complex patterns of values of moderator variables. All this implies that the subgroups are
not known in advance but are to be induced during the actual data analysis, rather. Moreover, ideally the
qualitative interactions should be not only statistically but also clinically significant, with sizeable sub-
group between-treatment differences of varying signs that are most relevant for clinical practice. In quite
some cases, such an outcome could be facilitated by including in the induction a subgroup of patients for
whom type of treatment (A or B) makes no difference (i.e., an ‘indifference group’, introduced before as
‘region of uncertainty’ [2,8]).

1.2. Previous work
Previous methodological work on the study of treatment–subgroup interactions primarily pertained to the
situation in which clear a priori hypotheses exist about which subgroups are involved in the interactions
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and in which the subgroups can be defined by means of one or a small number of patient characteristics
only. Most methods that have been studied at this point stem from the area of linear multivariate analysis.
Important special instances include, for the case of categorical moderators only, analysis of variance
(possibly in conjunction with a predefined contrast coding of the hypothesized effects to increase power
[9, p. 388]); for the case of continuous or mixed continuous-categorical patient characteristics, several
forms of regression analysis with suitable interaction terms have been studied, variously referred to as
moderated regression analysis [10] and aptitude treatment interaction analysis [11]. To capture more
complex and nonlinear interaction effects, such approaches have been extended in several directions,
making use of, for example, fractional polynomials [12], random effects [13], and generalized additive
modeling techniques [14].

For the context that constitutes the focus of the present paper, with a large number of potential moder-
ators and absence of clear a priori hypotheses, several authors have warned against multiplicity problems
and spurious interactions that cannot be replicated in follow-up studies [1, 15]. Keeping in mind these
warnings, so far, a few interesting methods have been developed. These methods induce subgroups
involved in a treatment–subgroup interaction from the data. All methods in question are of a recur-
sive partitioning type. They are the regression trunk model implemented as Simultaneous Threshold
Interaction Modeling Algorithm (STIMA) [16, 17], Interaction Trees [18, 19], Virtual Twins [20], and
Subgroup Identification Based on Differential Effect Search (SIDES) [21].

The goal of STIMA and Interaction Trees is to partition the total group of patients into subgroups
that differ as much as possible in relative treatment effectiveness; this implies that the two methods
look for subgroups involved in an as large as possible treatment–subgroup interaction. The other two
methods, Virtual Twins and SIDES, start by considering one of the two treatment alternatives as the ref-
erence treatment and the other as the alternative treatment; subsequently, the methods aim at identifying
specific subgroups of patients in which the alternative treatment outperforms as much as possible the
reference treatment, while disregarding all other patients in the sample (for a detailed comparison of the
four methods, see [22]). As the goal of STIMA and Interaction Trees is related more closely to the one
of the present paper, from now on, we will primarily focus on these two methods.

STIMA is an elaboration of a an earlier developed method for the detection of treatment–subgroup
interactions [16]. It is based on a hybrid methodology, combining a multiple regression model and a
tree from which interaction terms in the regression model are derived. Within the context of treatment–
subgroup interactions, the dependent variable in the regression model is treatment outcome. STIMA
starts with a regression model that contains main effects of treatment type and of all moderators, next
to a tree for which the first split is made on the basis of treatment variable T . In the remainder of the
algorithmic process, the tree will undergo a sequential splitting, with each split being based on one of
the moderators and with each node of the tree implying a treatment–moderator interaction term that is
added to the regression model. In each step of the algorithm, STIMA will search among all leaves of
the current tree, among all moderators, and among all split points for the split that is associated with the
interaction term that induces the highest increase in variance accounted for by the regression model.

Interaction Trees aim at accounting for heterogeneity in differential treatment effectiveness in two-arm
RCTs by a sequential tree building process. Like for STIMA, this process is regression model based yet
only making use of local regression models. That is to say, given a leaf of the current tree, a moderator,
and a split point, two local regression models (with treatment outcome as dependent variable) are com-
pared: (1) a regression model that includes main effects of treatment type T and of an indicator variable
D for a split on the basis of the moderator and split point under study and (2) a regression model that
includes the same two main effects plus an interaction term, that is, the product between T and D. For
the leaf under study, the split (i.e., combination of a moderator and a split point) is selected for which
model (2) implies the most significant gain over model (1).

Both STIMA and Interaction Trees allow the user to identify subgroups of patients that are involved
in treatment–subgroup interactions from data sets with many patient characteristics that could possi-
bly interact with treatment. Moreover, both methods also involve pruning procedures to avoid solutions
with spurious interaction effects. Yet, a shortcoming of the two methods is that they address treatment–
subgroup interactions in general and that the user has no control over the type of interactions involved
in the tree. This may be a significant drawback if especially qualitative interactions are of interest. For
example, in the presence of strong quantitative interaction effects, qualitative interactions may remain
undetected. An additional shortcoming is that in the splitting processes of STIMA and Interaction Trees,
indifference groups are not considered, which may hamper the identification of clinically meaningful
qualitative interactions.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 219–237
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1.3. Aim of the present paper

The present paper proposes a novel sequential partitioning method exactly designed to remedy for the
shortcomings mentioned earlier. This method is called QUalitative INteraction Trees (QUINT). Making
use of a set of novel partitioning criteria, the method first performs a check if qualitative treatment–
subgroup interactions are present in the data. If this is the case, QUINT automatically identifies the
combinations of dichotomized moderators that are most important for qualitative treatment–subgroup
interactions. The result of a QUINT analysis is a binary tree that implies a partitioning of the total sam-
ple in three groups of patients: those for whom treatment A is better than treatment B, those for whom
B is better than A, and those for whom it does not make any difference.

The remainder of this paper is organized as follows. First, we describe the conceptual basis of QUINT,
along with the associated algorithm (Section 2). Second, we test the performance of the method with a
simulation study, in which we will also pay special attention to the risk of inferential errors (Section 3).
Third, we apply QUINT to the data set of breast cancer patients from Scheier et al. [23] (Section 4); in
this application, we will also compare the performance of QUINT with that of STIMA and Interaction
Trees. Discussion points and concluding remarks are given in the final section.

2. Method

2.1. Overview

We start from a group of N patients randomly assigned to one of two treatments A and B. All patients
are measured before and after the treatment. Before the treatment, a group of categorical and/or contin-
uous background characteristics of the patients is measured (e.g., severity of disease), that is, a set of
baseline variables. After the treatment, one primary continuous outcome variable is measured. The out-
come variable can also be measured twice: before and after the treatment. In that case, the change score,
or the slope of response over time, or time to an event can be used as outcome for QUINT. The goal of
QUINT is to find the best partition of the total group of patients on the basis of the baseline variables into
two or three mutually exclusive and exhaustive subgroups (i.e., partition classes) that are characterized
as follows: In the first (nonempty) subgroup (}1/, the patients assigned to treatment A show a clearly
better outcome than the patients assigned to B; in the second (nonempty) subgroup (}2/, the reverse is
true; and in the third (optional) subgroup (}3/, the patients assigned to A show more or less the same
outcome as the patients assigned to B. It is important to note that the subgroups may comprise one or
several types of patients as defined by different (combinations of) patient characteristics.

We are looking for a partition that is optimal in the sense that the qualitative treatment–subgroup
interaction has the largest possible practical significance. This means that the interaction should imply
the presence of a sizeable subgroup of patients for which assignment to treatment A would be strongly
preferable, as well as the presence of another sizeable subgroup of patients for which assignment to treat-
ment B would be strongly preferable. To achieve this, two conditions with regard to the subgroups }1

and }2 need to be satisfied, each of which implies two subconditions that are to be met simultaneously:
(a) In both }1 and }2, the difference in outcome between treatments A and B should be as large as pos-
sible and (b) both }1 and }2 should comprise as many patients as possible. We will further call the first
condition the ‘Difference in treatment outcome component’ and the second one the ‘Cardinality compo-
nent’. In Section 2.3, we will propose exact measures for these components: with regard to Difference in
treatment outcome component, a measure for the extent to which one treatment is preferred to another
treatment in both }1 and }2, and with regard to the Cardinality component, a measure for the extent to
which the subgroups assigned to }1 and }2 are sizeable. Finally, for the qualitative treatment–subgroup
interaction to have really practical significance, both component conditions need to be satisfied. Hence,
our partitioning criterion will imply that the conjunction of the two components will be maximized.

We focus on partitions that can be obtained through a binary tree based on dichotomizations of the
patient characteristics. As examples, one may consider the trees as represented in Figure 2. The QUINT
algorithm starts with a tree consisting of a single node, that is, the root node containing all patients.
Next, it follows a stepwise binary splitting procedure. This procedure implies that in each step, a node, a
baseline characteristic, a split of that characteristic, and an assignment of the terminal nodes or leaves of
the current tree to (}1, }2, }3/ are chosen that maximize the partitioning criterion. Note that this means
that after each split, all leaves of the tree are re-assigned afresh to the subgroups }1, }2, }3; hence, the
QUINT procedure is nonrecursive. In the following subsections, we formalize all the above.
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Figure 2. Simulated data sets were generated from five true tree models: (a) model A; (b) model B; (c) model
C; (d) model D; and (e) model E. Each leaf (rectangle) contains the conditional outcome means for the two
treatment groups (�Y jT D1 and �Y jT D2/ and Cohen’s effect size (d/, expressed as the standardized mean
difference between T D 1 and T D 2. Assignment of the leaves to the three partition classes is represented

in green, }1; red, }2; and dark grey, }3.
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2.2. Concepts and notation

Let variable T be a treatment indicator variable, with levels 1 and 2 referring to treatments A and B,
respectively. We further denote the baseline characteristics by X1; : : : ; XJ and the outcome variable
by Y .

We look for a tripartition f}1; }2; }3g of the value range of (X1,. . . , XJ / for which it largely holds
that

if .X1; : : : ; ; XJ / 2 }1 W Y jT D 1 > Y jT D 2 ;

if .X1; : : : ; XJ / 2 }2 W Y jT D 2 > Y jT D 1;

and

if .X1; : : : ; XJ / 2 }3 W Y jT D 1 � Y jT D 2;

where ‘>’ means ‘preferable to’ and ‘�’ means ‘approximately equal to’ in terms of raw scores on Y or
of effect sizes (also see Section 2.3.1). The tripartitions are based on a binary tree. We denote a leaf (i.e.,
region) of such a tree by R`, with ` D 1; : : : ; L and with L being the total number of leaves. For exam-
ple, the set of leaves of the tree of Figure 2c is fR1; R2; R3; R4g, where the nodes have been numbered
from left to right.‡ Patients belong to a particular node (i.e., a patient type) on the basis of their scores
on the baseline characteristics.

To link a binary tree to a tripartition f}1; }2; }3g ; we define an assignment function f that assigns
each node fR1; : : : ; RLg to one of the partition classes f}1; }2; }3g. For example, if f .2/ D 3, this
means that node R2 is assigned to }3. In Figure 2c, it holds that f .1/ D 1; f .2/ D 3; f .3/ D 3; and
f .4/ D 2. It then follows that }1 D R1, }2 D R4, and }3 D R2 [ R3.

2.3. Partitioning criterion

As mentioned before, our partitioning criterion includes two components that are optimized simultane-
ously, the Difference in treatment outcome component and the Cardinality component. In the following,
we will discuss both components successively; next, we will discuss their combination into a single
overall optimization criterion.

2.3.1. Difference in treatment outcome component. We consider two possible specifications of the Dif-
ference in treatment outcome component on the level of the leaves of the tree: (a) the difference in
means of outcome Y and (b) the corresponding effect size, quantified through Cohen’s d [24]. Both
specifications imply that the difference in treatment outcome for a node R` is defined as

˛`

� NYT D1;` � NYT D2;`

�
: (1)

If ˛` D 1, the expression in (1) denotes a difference in treatment means; if ˛` D 1=s`, it denotes the
effect size Cohen’s d [24, pp. 66–67], with s` being defined as

s` D
s

.n1 � 1/s2
T D1;`

C .n2 � 1/s2
T D2;`

nT D1 C nT D2 � 2
; (2)

where n1 and n2 denote the sample sizes of the treatment groups (respectively, T D 1 and T D 2). In
other words, s` is the pooled within-sample estimate of the population standard deviation of the treat-
ment groups in leaf R`. As a variant of s`, one could consider the average standard deviation in the two
treatment groups, defined as

s0
` D

s
s2

T D1;`
C s2

T D2;`

2
: (3)

In numerical work, we found similar solutions using s0
`

and s`. A plausible reason for this is that Cohen’s
d is used here purely as a descriptive statistic of the magnitude of the treatment effect in the sample, with

‡ After a split, the nodes that form the leaves of a tree at that moment are renumbered from left to right.
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no inferences being made about population values. A further discussion of the choice of the difference
in treatment outcome (i.e., the value of ˛`/ is given in Supplementary materials A.1.§

The overall difference in treatment outcome of the nodes assigned to }1 (denoted by D1/ can be
computed as a weighted average of the difference in treatment outcome across all the nodes R`:

D1 D

LP
`D1

I (f .`/ D 1/ #R` ˛`

� NYT D1;` � NYT D2;`

�
LP

`D1

I (f .`/ D 1/ #R`

; (4)

where #R` denotes the number of patients in node R`, and I.f .`/ D 1/ denotes an indicator function
of the leaves assigned to }1. Similarly, the overall difference in treatment outcome of the leaves R`

assigned to }2 is expressed as

D2 D

LP
`D1

I (f (`/ D 2/ #R` ˛`

� NYT D2;` � NYT D1;`

�
LP

`D1

I (f (`/ D 2/ #R`

: (5)

One may note that (4) and (5) imply that in calculating an overall measure of difference in treatment
outcome for a partition class, more weight is given to nodes within that class where the difference can
be more reliably estimated because of a larger sample size.

As explained in Section 2.1, for a qualitative treatment–subgroup interaction to be clinically or practi-
cally significant, it is of utmost importance that the difference in treatment outcome is sizeable in both }1

and }2. The Difference in treatment outcome component is therefore put equal to the product D1 � D2,
with D1 and D2 as given in (4) and (5).

2.3.2. Cardinality component. Regarding the Cardinality component, we first calculate for each of the
two partition classes }c (c D 1; 2) the sum of the cardinalities of the nodes assigned to that partition
class, which may be expressed as

 
LX

`Dc

I.f .`/ D c/ #R`

!
:

Similarly to the difference in treatment outcome and as explained in Section 2.1, for a qualitative
treatment–subgroup interaction to be practically significant, it is of utmost importance that the cardi-
nality of both }1 and }2 is sizeable. The Cardinality component is therefore put equal to the product of
the cardinalities of the two partition classes.

2.3.3. Combination of the two components into a single overall partitioning criterion. Practical signif-
icance requires that the Difference in treatment outcome component and the Cardinality component are
to be maximized simultaneously (Section 2.1). In principle, an overall partitioning criterion then could
be the product of the two components in question. From a practical point of view, however, it is more
convenient to put the two components on a log-scale, such that the final partitioning criterion can be
expressed in an additive rather than a multiplicative way.

Before being able to formulate this final criterion, two obstacles still have to be removed. First, because
D1 and D2 can take values lower than 1, their logarithms may become negative. To remedy for this, we
take the logarithm of 1 C D1 (respectively 1 C D2). Second, to properly combine the Difference in
treatment outcome and Cardinality components, the two components need to be put on comparable mea-
surement scales. For this purpose, we give the two components suitable, well-defined weights, which are
derived by setting the realistic maximum of both components after weighting about equal (details of the

§Supporting information may be found in the online version of this article.
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derivation and the resulting values of the weights are given in Supplementary materials A.2). Taking into
account all the aspects mentioned earlier, our global partitioning criterion (C ) then reads as follows:

C D w1 Œlog.1 C D1/ C log.1 C D2/� C

w2

"
log

 
LX

`D1

I.f .`/ D 1/ #R`

!
C log

 
LX

`D1

I.f .`/ D 2/ #R`

!#
;

(6)

with D1 and D2 being defined in (4) and (5), respectively, and with w1 denoting the weight of the
Difference in treatment outcome component and w2 that of the Cardinality component.

As an aside, one may note that the maximization of the Cardinality component forces the cardinalities
of }1 and }2 to be approximately equal, which implies that D1 and D2 as included in the Difference in
treatment outcome component are calculated on the basis of comparable sample sizes.

2.4. The sequential partitioning algorithm

2.4.1. Stepwise procedure. QUINT uses a stepwise binary tree algorithm that maximizes partitioning
criterion C . The algorithm starts from a tree consisting of a single node containing all patients. During
the splitting process, the algorithm takes into account several stopping criteria. These criteria deter-
mine whether a solution is admissible or not, with only admissible solutions being considered in the
optimization procedure. We describe first the stepwise procedure and then the stopping criteria.

In each step of the algorithm, all leaves of the tree as obtained from the previous step are considered
as candidate parent nodes. Two substeps are then performed. In the first substep, the algorithm looks in
each candidate parent node for the optimal split in terms of an optimal combination of three ingredients
(a triplet): a splitting variable, a split point, and an admissible assignment of all the leaves of the tree
after the split. For this purpose, each baseline characteristic acts as a candidate splitting variable. For
each of these candidates, first from the total set of observed values, the subset of admissible split points
is determined; second, the split point and admissible assignment are chosen that induce the highest value
of the partitioning criterion C . This substep then is concluded by selecting across all candidate splitting
variables the triplet that implies the highest value of C ; this is retained as the optimal triplet for the
candidate parent node under study.

In the second substep, the values of C associated with the optimal triplets are compared across all
candidate parent nodes, and the node with the highest value is chosen. If this value is higher than that of
the tree resulting from the previous step, the chosen node then is split into two child nodes (on the basis
of the characteristic and split point as included in the optimal triplet associated with that node).

2.4.2. Stopping criteria. The QUINT algorithm stops when a split can no longer be found that implies a
higher value of C . The user, however, may stop the algorithm earlier, by specifying a priori the maximum
possible number of leaves (Lupperlimit). The QUINT algorithm further takes into account four additional
stopping criteria, which can be regarded as boundary conditions.

The first criterion is checked after the first split only, when the tree has two leaves; these leaves have
to be assigned to }1 and }2 (due to the nonempty partition class condition, which will be explained
later). The criterion then reads that the absolute value of the standardized mean difference in treatment
outcome in each of the two leaves should exceed a critical minimum value (dmin). This can be seen as
a check of whether a qualitative interaction is present in the data and therefore is called the qualitative
interaction condition. If this condition is met, a tree is grown; otherwise, no tree is grown.

The second criterion pertains to the tree growing process. It reads that in each leaf, a minimum num-
ber of patients is in treatment A and a minimum number in treatment B. For reliable estimation of each
treatment mean, the number of patients is controlled per treatment. This criterion is referred to as the
minimal sample size per treatment condition.

The final two criteria pertain to the assignment of all leaves of the three to the partition classes after
each split. The first of them reads that the partition classes }1 and }2 are not empty and will be referred
to as the nonempty partition class condition. The second reads that a node can be assigned to }1 only if
in that node, the mean outcome of the patients in treatment A exceeds that of the patients in treatment B;
similarly, a node can be assigned to }2, only if the mean outcome of the patients in A is lower than that
of the patients in B. This criterion will further be referred to as the mean difference per node condition.

It may happen that, for a specific data set, in the first step of the QUINT procedure, one or more of
the four criteria outlined earlier cannot be met, and hence, no admissible solutions for this data set are
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available. For example, if for every partition of the patients on the basis of splits on threshold values of
the baseline variables, it holds that in each node, the mean outcome of the patients in A exceeds that of
the patients in B, one will never be able to find a qualitative treatment–subgroup interaction.

One may finally note that the specification of the QUINT criterion and stopping criteria imply several
user-defined choices. An overview of these choices, along with recommendations and default values,
can be found in Supplementary materials A.

2.5. Pruning

The tree growing process of QUINT stops if no more parent node can be found with an admissible triplet
and a higher value of C than in the previous step (or if the total number of leaves equals Lupperlimit). This
may result in a large tree that fits the data at hand perfectly but that will not fit future data. To avoid this
so-called overfitting and to increase the predictive validity of the final tree, a generally accepted strategy
within the domain of tree-based methods is to prune the maximal tree back to some optimal subtree.

For the pruning of QUINT, we appeal to a bias-corrected bootstrap procedure as proposed by Efron
[25] and as applied to tree-based models by LeBlanc and Crowley [26]. Our pruning procedure further
implies a simplified form of cost complexity pruning [26,27] and relies on the fact that the nonrecursive
stepwise algorithm automatically yields a sequence of nested subtrees, for which the number of leaves
(L) may act as a complexity parameter. A detailed description of the pruning procedure in QUINT can
be found in Supplementary materials B.

3. Simulation study

3.1. Motivation

In this section, we want to evaluate the optimization and recovery performance of QUINT. Optimization
performance pertains to whether the QUINT algorithm is successful in identifying a solution with opti-
mal value for criterion C , given in (6). This question is linked to the sequential nature of the QUINT
algorithm: The stepwise partitioning procedure guarantees that within each split, an optimal triplet is
found but not that the solution after several splits is still globally optimal. We would like to get an idea
to what extent this is the case.

Recovery performance from its part pertains to the extent to which the QUINT algorithm is successful
in retrieving the true structure underlying the data. At this point, four structural aspects (RP1–RP4) can
be distinguished. The first three of these pertain to the structure of the true underlying tree. In particular,
RP1 relates to the presence/absence of a qualitative treatment–subgroup interaction in this tree. That is,
we want to know the probability that QUINT decides wrongly that a qualitative interaction is present in
data generated from a true tree structure without a qualitative treatment–subgroup interaction (type I error
[RP1a]); also, we would like to know to which extent QUINT decides wrongly that a qualitative inter-
action is not present in data generated from a true tree structure with a qualitative treatment–subgroup
interaction (type II error [RP1b]). In other words, the type I error rate represents the probability that the
QUINT solution identifies spurious qualitative interaction effects and the type II error rate represents the
probability that QUINT fails in detecting true qualitative interaction effects.

Regarding RP2, one may wish to know whether, given an underlying true tree with a qualitative
treatment–subgroup interaction that QUINT has correctly detected, QUINT is also successful in iden-
tifying the complexity of the true tree; or, stated in other words, one may wish to know the quality of
performance of the pruning rule. Furthermore, given the same situation and given the true complexity of
the underlying tree, one may wish to know to what extent QUINT is able to recover the structure of the
true tree in terms of the true splitting variables and the true split points (RP3). A fourth and final aspect
of recovery (RP4) pertains to the assignment of the observations to the three partition classes.

3.2. Design

Artificial data sets were generated that differed in the complexity of the binary tree as involved in the
treatment–subgroup interaction. Each data set consisted of N observations on one binary treatment vari-
able T , J continuous baseline variables or covariates (X1; : : : ; XJ /, and one continuous outcome Y .
Variables X1 to XJ were multivariate normally distributed, with the value of �Xj

for the splitting vari-
ables used in the true models (X1; X2; X4; X5; Figure 2) being fixed at 10, 30, �40, and 70, respectively,
with the value �Xj

for the other variables being drawn from a discrete uniform distribution on the
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interval [�70; 70], and with for all variables �Xj
D 10. The correlation between the covariates was a

design factor (see following text). T was Bernoulli distributed, with � D 0:50, and independent from
X1; : : : ; XJ . The distribution of Y was based on five different true binary tree structures: models A to E
(Figure 2a–e). Models A through D all contain one or more qualitative interactions, while Model E does
not contain a qualitative interaction but a quantitative one; this latter model is used to investigate the
type I error. Per leaf and per treatment condition, Y was normally distributed, with �Y D 5 and with �Y

depending on the particular combination of the leaf and treatment condition in question. We fully crossed
four design factors: (1) the sample size N (having five levels: 200, 300, 400, 500, and 1000); (2) the total
number of covariates J (having three levels: 5, 10, or 20); (3) the value for the difference in treatment
outcome in the leaves assigned to }1 or }2 (�Y jT D1 ��Y jT D2 was set at 2.5, 5.0, and 10.0, respectively,
for the leaves assigned to }1, and �Y jT D1 � �Y jT D2 was set at �2:5, �5:0, and �10:0, respectively, for
the leaves assigned to }2, implying effect sizes [d ] in these leaves with a medium value [d D 0:50 or
�0:50], moderately large [d D 1 or �1], and very large [d D 2 or �2] value); and (4) the intercorrela-
tion between the covariates (having two levels: �j j 0 D 0:20 and �j j 0 D 0:20; 8j ¤ j 0 D 1; : : : ; J /.
For each cell of the design, 100 data sets were generated. This resulted in 5 �3 �3 �2 �100 D 9000 data
sets for each of the five models.

3.3. Analysis

QUINT was applied to each data set using the treatment effect size criterion (Section 2.3.1). Thus, in
total, 45,000 QUINT analyses were performed. The maximum tree size (Lupperlimit/ was fixed a priori at
8, and default values were used for the other stopping criteria, the weights, and the number of bootstrap
samples (given in Supplementary materials A and B). The 1-SE pruning rule was applied to determine
the optimal size of the tree. The analyses were performed in R [28] with the R package ‘quint’, which is
available from the authors upon request.

3.4. Results

3.4.1. Optimization performance. Regarding optimization performance, we wanted to know whether
QUINT yields globally optimal solutions. Yet, the globally optimal solution of the QUINT problem is
in general unknown. As a way out, as a lower bound for the globally optimal criterion values, we used
the criterion values (C ) of the true structure that was used to generate the data. We then compared these
with the values of the QUINT solutions ( OC ), for each split of the tree (up to the true number of splits for
each data set). A nonsuspected solution was defined as a solution with OC �C > �0:05, with the value of
0.05 being chosen by taking into account numerical precision. The proportion of nonsuspected solutions
was determined for all true models that included a qualitative interaction (i.e., models A through D).
The results showed that across all models, design factors, and splits, the mean value of the proportion
of nonsuspected solutions was high (0.97), indicating an overall good optimization performance. The
mean value decreased with increasing size of the tree: After the first, second, and third splits, the mean
proportion was 1.00, 0.97, and 0.91, respectively.

3.4.2. Recovery performance.

(RP1a) Probability of type I errors. With regard to the type I error, remember that the QUINT algorithm
decides that a qualitative interaction is present, unless the qualitative interaction condition is violated.
This condition states that, after the first split, the minimum of the absolute value of the effect sizes in
the two leaves should exceed the value of dmin. The type I error of QUINT was evaluated making use
of the model E data sets (Figure 2) for various values of dmin (between 0.20 and 0.40). We then counted
for each cell of our design and for various values of dmin the proportion of QUINT solutions without
a violation of the qualitative interaction condition (i.e., the proportion of solutions for which QUINT
wrongly decided that a qualitative interaction was present, or the type I error rate). The resulting pro-
portions were subjected to an analysis of variance (ANOVA) with the four design factors and dmin as
independent variables and with the five-way interaction being used as error term. The ANOVA results
revealed that type I error rate was influenced mainly (partial �2 > 0:80) by the value of dmin, sample size,
difference in treatment outcome, and the two-way interactions dmin * sample size, and dmin * difference
in treatment outcome. Error rates averaged across the levels of the two less important factors, number
of covariates and intercorrelation, are presented in Table I. For the smaller sample sizes (N D 200 and

228

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 219–237



E. DUSSELDORP AND I. V. MECHELEN

Table I. Proportion of solutions for data from a true model with no qualitative interaction (model E,
Figure 2) where the QUINT algorithm wrongly decided that a qualitative interaction is present (type I
error rate) for various values of the parameter of the qualitative interaction condition (dmin).

dmin

DT N 0.20 0.25 0.30 0.35 0.40

M 200 0.72 0.61 0.47 0.32 0.20
300 0.51 0.37 0.24 0.14 0.06
400 0.45 0.29 0.13 0.06 0.01
500 0.29 0.16 0.08 0.02 0.00

1000 0.10 0.03 0.01 0.00 0.00

L 200 0.56 0.47 0.37 0.28 0.23
300 0.39 0.30 0.22 0.14 0.08
400 0.29 0.18 0.11 0.07 0.03
500 0.21 0.12 0.06 0.02 0.00

1000 0.07 0.03 0.01 0.00 0.00

XL 200 0.39 0.31 0.22 0.18 0.14
300 0.27 0.18 0.12 0.07 0.04
400 0.18 0.11 0.06 0.04 0.01
500 0.13 0.07 0.03 0.01 0.00

1000 0.03 0.02 0.01 0.00 0.00

Results are presented separately for simulated data with varying true size of the difference in treatment outcome
(DT) (i.e., medium [M], moderately large [L], and very large [XL]) and with varying sample size N . Results
have been averaged across the levels of the factors number of covariates (5, 10, or 20) and intercorrelation
between covariates (� D 0 or � D 0:20).

300), the type I error rate appeared to be high (>0.15) for most values of dmin. For the other sample sizes
and for dmin values of 0.30 and higher, the type I error seemed largely acceptable.

(RP1b) Probability of type II errors. For the data sets generated from the models with a true qualitative
interaction (i.e., models A through D), we calculated for each cell of our design and for various values
of dmin the proportion of solutions with a violation of the qualitative interaction condition (i.e., the pro-
portion of solutions for which QUINT wrongly decided that a qualitative interaction was not present, or
the type II error rate). The ANOVA results revealed that type II error rate was influenced mainly (partial
�2 > 0:80) by the value of dmin, sample size, difference in treatment outcome, and the three-way inter-
action dmin * sample size * difference in treatment outcome. Error rates averaged across the levels of the
two less important factors are presented in Table II. This table shows that the effect of the difference in
treatment outcome was most important: For a medium-sized difference in treatment outcome, the type
II error appeared to be acceptable (<0.20), only for the simple model (model A) when dmin values were
0.30 or lower and sample sizes (N ) were 400 or higher; for a moderately large difference, the type II
error was acceptable (<0.20) for the less complex models (models A and B) when dmin values were 0.30
or lower, and for the more complex models (models C and D) when dmin was equal to 0.20; for a very
large difference in treatment outcome, the type II error was completely negligible (<0.05).

(RP2) Recovery of tree complexity. For each data set, we compared the size of the pruned QUINT tree
with the true tree size in terms of exact match and exact match plus or minus one. To keep a good balance
between types I and II error, we used a value of dmin D 0:30 for the qualitative interaction condition.
The ANOVA results revealed that the recovery rate of the true tree size was influenced mainly by sample
size, difference in treatment outcome, and the two-way interaction between them. For a medium-sized
and moderately large difference in treatment outcome, the recovery rate (exact match plus or minus one)
decreased with increasing complexity of the tree (models C and D) in conjunction with smaller sample
sizes (Table III). For a very large difference in treatment outcome, the recovery rate was satisfactory
(>0.80) for almost all models (Table III).

(RP3) Recovery of splitting variables and split points. The ANOVA results revealed that the recov-
ery of the splitting variables and split points was influenced by all design factors (and the three-way
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Table II. Type II error: proportion of solutions for data from models A through D (Figure 2) that are wrongly
indicated as without a qualitative interaction; the cells display the type II error rate for various values of dmin

(0.20, 0.30, and 0.40).

Model A Model B Model C Model D
dmin dmin dmin dmin

DT N 0.20 0.30 0.40 0.20 0.30 0.40 0.20 0.30 0.40 0.20 0.30 0.40

M 200 0.13 0.24 0.47 0.26 0.48 0.78 0.24 0.52 0.82 0.30 0.60 0.87
300 0.11 0.21 0.39 0.30 0.60 0.87 0.30 0.67 0.94 0.40 0.76 0.96
400 0.08 0.17 0.39 0.32 0.67 0.92 0.39 0.80 0.96 0.52 0.89 0.99
500 0.05 0.13 0.33 0.36 0.75 0.96 0.35 0.81 0.98 0.61 0.93 1.00

1000 0.03 0.08 0.26 0.26 0.81 0.99 0.45 0.93 1.00 0.68 0.97 1.00

L 200 0 0.01 0.04 0.05 0.14 0.33 0.11 0.24 0.50 0.18 0.42 0.68
300 0 0.01 0.02 0.02 0.12 0.32 0.06 0.20 0.48 0.13 0.42 0.73
400 0 0 0 0.01 0.08 0.31 0.06 0.21 0.52 0.11 0.42 0.78
500 0 0 0 0.01 0.07 0.32 0.04 0.14 0.42 0.11 0.42 0.81

1000 0 0 0 0 0.01 0.24 0 0.06 0.36 0.02 0.33 0.82

XL 200 0 0 0 0 0 0 0.01 0.01 0.02 0 0 0.01
300 0 0 0 0 0 0 0 0 0.01 0 0 0
400 0 0 0 0 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0 0 0

Results are presented separately for simulated data with varying true size of the difference in treatment outcome (DT)
(i.e., medium [M], moderately large [L], and very large [XL]) and with varying sample size N . Results have been
averaged across the levels of the factors number of covariates (5, 10, or 20) and intercorrelation between covariates
(� D 0, or � D 0:20).

Table III. Goodness-of-recovery performance of the pruning rule of QUINT; cells display the conditional
proportions of solutions with the correct true tree size (left) and the correct true tree size plus or minus
one (right).

True size True size ˙1

Model Model

DT N A B C D A B C D

M 200 0.67 0.12 0.05 0.04 0.75 0.61 0.26 0.27
300 0.79 0.21 0.05 0.05 0.85 0.72 0.27 0.29
400 0.86 0.16 0.06 0.07 0.92 0.81 0.31 0.17
500 0.89 0.28 0.08 0.09 0.94 0.88 0.32 0.27

1000 0.99 0.37 0.21 0.21 1.00 0.98 0.62 0.39

L 200 0.97 0.22 0.09 0.10 0.98 0.77 0.34 0.33
300 0.98 0.57 0.18 0.18 1.00 0.92 0.53 0.51
400 0.99 0.75 0.32 0.30 1.00 0.95 0.63 0.75
500 1.00 0.86 0.55 0.38 1.00 0.96 0.77 0.89

1000 1.00 0.95 0.93 0.60 1.00 1.00 0.99 0.98

XL 200 0.99 0.81 0.40 0.20 0.99 0.91 0.60 0.86
300 1.00 0.96 0.75 0.30 1.00 0.98 0.84 0.93
400 1.00 0.98 0.93 0.36 1.00 0.99 0.96 0.94
500 1.00 0.96 0.96 0.54 1.00 0.99 0.99 0.97

1000 1.00 0.97 0.99 0.82 1.00 1.00 1.00 0.99

Results are presented separately for simulated data with varying true size of the difference in treatment outcome (DT)
(i.e., medium [M], moderately large [L], and very large [XL]) and with varying sample size N . Results have been
averaged across the levels of the factors number of covariates (5, 10, or 20) and intercorrelation between covariates
(� D 0 or � D 0:20).230
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interaction between them) except for the intercorrelation between the covariates. The results are given in
the Supplementary Materials Table 1. Especially the combination of a medium-sized difference in treat-
ment outcome with a smaller sample size implied a poorer recovery, with this phenomenon strengthened
in case of a larger number of covariates.

(RP4) Recovery of the assignments of the observations to the partition classes. For each data set, the
agreement (Cohen’s �) between the assignment to the partition classes of the QUINT solution and the
true assignment was computed. Then, for each model, the 100 Cohen’s � values for each cell of the
simulation design were collected into one matrix (resulting in matrix of 9000 by 5). Next, an ANOVA
analysis was performed, with the four design factors as independent variables and the value of Cohen’s
� as dependent variable.

For models A through D, the mean Cohen’s � values across all design factors varied between almost
perfect to moderate: 0.93, 0.72, 0.64, and 0.56, respectively. The ANOVA results revealed that the value
of Cohen’s � was influenced mainly by sample size and difference in treatment outcome and, to some
extent, by the two-way interaction between them. The results are given in the Supplementary materials
Table 2. Especially the combination of a medium-sized difference in treatment outcome with a smaller
sample size implied a poorer recovery.

3.5. Discussion

The results of the simulation study showed that the optimization performance was satisfactory; only few
solutions were found that were clearly local optima. For the first split, this finding is tautological; for fur-
ther splits, this result has information value. Furthermore, the results of the types I and II error revealed
that a good balance between the two can be obtained if a value of dmin D 0:30 is used in the qualitative
interaction condition. However, caution needs to be taken when sample sizes are small (N 6 300). It
should be noted that the choice of dmin can also be made a priori on a theoretical or clinical basis, taking
into account, for example, the nature of the disorder being treated.

The type I errors found in our simulation study were comparable with those of Interaction Trees
[18, Table 2, p. 149] and somewhat higher than those of STIMA [17, Table 1, p. 521]. The type II errors
of QUINT were somewhat higher than those of Interaction Trees [18, Table 2, p. 149].

The evaluation of the recovery performance of the other aspects (tree complexity, tree structure, and
assignment to partition classes) revealed that the results were satisfactory for all models when sample
sizes were larger (N > 400) and true differences in treatment outcome were larger (d > j1j/. When
the true difference in treatment outcome was medium sized, the overall recovery performance was poor,
especially for small sample sizes. One plausible reason for this phenomenon was sampling error: For
example, for model A, when N equaled 200, the actual effect sizes (d ) in the right leaves of the simulated
data sets were far off �0:50 (range was �1:34 through 0.25). No difference in recovery performance was
observed between situations with intercorrelation between the covariates (� D 0:20) and without inter-
correlation. The total number of covariates influenced only the recovery of the structure of the true trees.
When this number was higher (J > 10) , larger sample sizes were needed (N > 500) to obtain good
recovery for more complex models. One plausible reason for this decline in performance is the problem
of selection bias in tree-based methods, especially for data with many continuous covariates. A solution,
as proposed by Loh [29], could be to consider in the selection process only the three quartiles (Q1, Q2,
and Q3) as possible split points to compute the criterion C . Subsequently, the final split point can be
computed optimally.

The recovery performance of QUINT was generally better than that of STIMA [17, Table 2, p. 521]
and as good as Interaction Trees [18, Table 2, p. 149], for true models comparable in complexity and
size of the interaction effect. It should be noted that the performance of QUINT was evaluated only for
situations with true treatment–subgroup interactions based on a binary tree structure and not for situa-
tions with other types of true treatment–subgroup interactions, for example, cross products. This would
be a challenge for future research.

4. Application to real data from Breast Cancer Recovery Project

4.1. Data

We re-analyzed data from the Breast Cancer Recovery Project for younger women with early-stage breast
cancer [23, 30]. The majority of these women had had a lumpectomy and their axillary nodes removed
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and had received combined radiation and chemotherapy. Within 2 months of having completed active
nonhormonal adjuvant therapy, participants (n D 252) were randomly assigned to one of three therapy
conditions: a control condition (standard medical care; n D 84), a nutrition intervention (how to adopt a
low-fat, high-fruit, high-vegetable diet; n D 85), and an education intervention (information about breast
cancer and provision of coping skills; n D 83). Our choice for these data was motivated by the fact that
Scheier et al. reported results of well-performed moderated regression analyses [23]. This enabled us to
compare QUINT with state-of-the-art moderator analysis. Previous analyses of these data showed that
both the nutrition and education interventions were more effective than standard medical care [30] and
that part of the main effect of intervention was moderated by patient baseline characteristics [23].

For our QUINT re-analyses of these data, we focused on the two nonstandard intervention groups and,
therefore, excluded the patients in the control condition. We further used one outcome variable, for the
construction of which we relied on a measure of depressive symptoms (by means of an abbreviated form
of the Center for Epidemiologic Studies Depression Scale, see [23]). This measure was collected both
at baseline and at a 9-month follow-up. We calculated a change score in such a way that a higher score
referred to a better outcome. The resulting outcome variable was referred to as Improvement in depres-
sion (Table IV). Because of missing values at the 9-month follow-up, the available cases for analyses
were 78 and 70, in the nutrition and education condition, respectively. As potential moderator variables,
we included all numerical patient characteristics from the original study (measured at baseline) without
missing values. Descriptive statistics for all variables that were included in our re-analyses are given
in Table IV.

4.2. Analysis with QUINT and results

Given that the outcome variable was based on a Likert-type scale, QUINT analyses were performed
using the treatment effect size criterion. Because the sample size was small (N D 148), a relatively large
value of dmin (dmin D 0:40) was used in the qualitative interaction condition (Section 2.4.2) to check
whether qualitative treatment–subgroup interactions were present in the data. A relatively large number
of bootstrap samples (B D 200) was used to estimate the bias-corrected criterion values. The default
parameter values were used for Lupperlimit (i.e., Lupperlimit D 10), the weights of the partitioning criterion,
and for the minimal sample size per treatment condition. After growing the full tree, we used the 1-SE

Table IV. Descriptive statistics for all variables involved in re-analyses of data from the Breast Cancer
Recovery Project. The potential moderators were all measured at baseline (i.e., before receiving nutrition
or education treatment).

Nutrition Education
n D 78 n D 70

Variable Range Mean (SD) Mean (SD)

Potential moderators
Age 30.5 51.4 44.4 (4.8) 43.8 (5.1)
Nationality (Caucasian vs. not) 0 1 0.91 (0.29) 0.96 (0.20)
Marital status (married vs. not) 0 1 0.67 (0.47) 0.83 (0.38)
Weight change (yes vs. no) a 0 1 0.44 (0.50) 0.46 (0.50)
Treatment extensiveness indexb �1:8 2.6 �0:1 (1.1) 0.1 (1.2)
Comorbiditiesc 0 13 3.0 (2.5) 2.4 (2.7)
Dispositional optimismd 6 24 16.4 (3.8) 17.5 (2.9)
Unmitigated communiond 15 42 29.7 (5.1) 29.1 (5.6)
Negative social interactiond 5 16 7.9 (2.4) 7.5 (2.2)

Outcome
Improvement in depression �12 18 2.4 (5.6) 0.7 (5.0)

SD, standard deviation.
aWeight gained or lost since diagnosis.
bA treatment extensiveness index was created by standardizing and aggregating type of surgery (1, lumpectomy; 2,
mastectomy) with type of adjuvant treatment received (0, none; 1, radiation or chemotherapy; 2, both).
cComorbidities was the sum of the checked potential comorbidities (e.g., diabetes, migraines, arthritis, or angina) and
the reported conditions that the participant currently had (open question).
dThese scales were measured by validated questionnaires (see for descriptions [23]).
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pruning rule to assess the optimal tree size (as explained in Supplementary materials B), and we applied
the validation procedure for small sample sizes (Supplementary materials C.2).

The QUINT analysis resulted in a full tree of seven leaves. The pruning rule indicated that the optimal
size of the tree was five leaves (Figure 3). Before interpreting the pruned tree of QUINT, we inspected
whether the bias-corrected estimates of C for each value of L (with L D 2; : : : ; Lmax/ exhibited a clear
maximum value. For this purpose, we plotted the bias-corrected estimates of C against L (Supplemen-
tary materials Figure 1). The plot showed a clear maximum at L D 5, suggesting that the bootstrap-based
selection worked well here. The splits of the pruned tree (Figure 3) involved the variables Dispositional
optimism, Amount of negative social interactions, and Treatment extensiveness. In the nodes of Figure 3,
the effect sizes are expressed as the standardized difference of the mean of the nutrition intervention
minus the mean of the education intervention. As a consequence, for the leaf assigned to }1, the effect
size d is positive, while for the leaves assigned to }2, the effect size d is negative. Three subgroups
of women were distinguished. One type of women (R2, with effect size d D 2:06, and assigned to
}1) appeared to benefit more from a nutrition than from an education intervention; these were women
whose condition was most severe from a psychological perspective (i.e., they were more pessimistic
and reported receiving higher levels of negative social interaction) but who so far had received the least
extensive physical treatment (i.e., lumpectomy without or with only one form of adjuvant therapy). Two
types of women (assigned to }2/ constituted a subgroup that appeared to benefit more from education
than from nutrition: one type (R1, with effect size d D �0:71) consisting of more pessimistic women
who were however OK in terms of social interaction and one type (R4, with effect size d D �0:96) con-
sisting of more (but not extremely) optimistic women. A third subgroup, for which both treatments were
about equally effective, consisted of two types of women: the type (R3) with the most severe condition,
both from a psychological perspective and from the perspective of past treatment extensiveness, and a
type (R5) consisting of overly optimistic women.

In the validation procedure, we set the number of bootstraps (B) equal to 1000 and the value of
Lupperlimit equal to 5. The results showed that the mean range of the effect sizes in the leaves of the boot-
strap solutions was 3.28. This mean range decreased to 1.77 in the leaves of the test solutions (using
the original data as ‘test data’). The resulting estimated bias (also called ‘optimism’) in the range of the
effect sizes was 1.51. This result implies that caution is needed when generalizing the effect sizes in the
leaves of Figure 3 to the entire population of younger women with early-stage breast cancer (also see
Section 5).

Figure 3. Results of application of QUINT to data from the Breast Cancer Recovery Project [23]. Pruned tree
for Improvement in depression is shown. Each node contains the sample size (n), the conditional outcome means
(and standard deviations) for the Nutrition and Education treatment groups ( NYT DNu and NYT DEd/, and Cohen’s
effect size (d ), expressed as the standardized mean difference between T D Nu and T D Ed. Assignment of the
leaves to the partition classes is represented in green, }1; red, }2; and dark grey, }3. Optimism, Dispositional

optimism; Neg soc int, Negative social interaction; Treat ext, Treatment extensiveness index.
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4.3. Analysis with STIMA and Interaction Trees, and results

STIMA was applied to the data from the Breast Cancer Recovery Project using the R package ‘stima’
and Interaction Trees using R functions supplied to the authors by Su [18]. For both methods, the mini-
mal node size was set at 10% of the sample size, and the maximum size of the tree was set at six leaves.
For STIMA, we used leave-one-out cross-validation and the 0.60-SE rule to prune the tree. For Interac-
tion Trees, we made use of 200 bootstrap samples that each played the role of test set, used 	 D 4 for
selecting the best-sized tree, and took the median best-size across all bootstrap samples.

The results of STIMA read that for both outcome variables, no treatment–subgroup interaction effects
were present, with the regression trunks being pruned back to the root node. The solution of Interaction
Trees was a tree with three leaves (Figure 4): two types of women for whom nutrition was considerably
better than education (R1, d D 0:95; R3, d D 1:50) and one type for whom kind of treatment did not
make a difference (R2, d D �0:14). Obviously, this implies a quantitative treatment–subgroup inter-
action. Note that the first split of the resulting tree (Figure 4) is not allowed in QUINT, because of the
qualitative interaction condition (Section 2.4.2).

4.4. Discussion

A comparison of our results with the results of the more classical approach to moderator analysis as
applied in the original study of Scheier et al. [23] revealed that all moderator variables that were retained
in the solutions by QUINT and Interaction Trees were also found by Scheier et al., except for the Treat-
ment extensiveness index. A plausible reason for this difference is that Scheier et al. focused only on
two-way interactions, while according to the tree-based solutions, Treatment extensiveness appeared to
contribute to higher-order interaction effects (Figures 3 and 4). Beyond the moderator variables that
were selected, QUINT and Interaction Trees provided several distinctive advantages over the classical
approach to moderator analysis. First, they resulted in a large reduction of the number of required anal-
yses. Second, they yielded additional information with regard to the cutoff points on the moderators that
are important for treatment–subgroup interactions. Last but not least, they provided an insightful (and
substantively meaningful) picture of the overall pattern of moderation for the whole of all relevant mod-
erator variables. Technically speaking, this also involved the detection of higher-order interactions and
nonmonotonic relationships between treatment and baseline characteristics of the patients (e.g., a non-
monotonic relationship was found between difference in treatment outcome and Optimism, see Figure 3).
Such interactions are typically hard to retrieve in standard moderator analyses.

In contrast to the results of QUINT and Interaction Trees, STIMA did not detect any treatment
subgroup–interaction effects. The most plausible reason for this is that STIMA also includes main effects
in the model, which may hamper the detection of interaction effects, especially in smaller data sets. Even

Figure 4. Result of application of Interaction Trees to data from the Breast Cancer Recovery Project [23]. Pruned
tree for Improvement in depression is shown. Each node contains the sample size (n), the conditional outcome
means (and standard deviations) for the Nutrition and Education treatment groups ( NYT DNuand NYT DEd/, and
Cohen’s effect size (d ), expressed as the standardized mean difference between T D Nu and T D Ed . Unmit

com, Unmitigated communion; Treat ext, Treatment extensiveness index.
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more importantly, the solutions of QUINT and Interaction trees were different (Figures 3 and 4), with
respect to the size of the tree, the first splitting variable, and the partitioning of the observations into
subgroups (i.e., Cohen’s � was 0.28). The solution of Interaction Trees was dominated by a quantita-
tive interaction effect, whereas QUINT revealed a qualitative treatment–subgroup interaction with clear
implications for optimal treatment assignment: On the basis of the (small) marginal treatment effect (i.e.,
the intervention main effect), a plausible decision would be to assign all future patients to the nutrition
intervention. The expected treatment benefit (i.e., decrease in depression) then would be 2.4 (instead of
0.7 with the education intervention; see root nodes of Figures 3 and 4). On the basis of the QUINT solu-
tion, one would assign the patients with characteristics that lead to end node R2 (15% of the population;
Figure 3) to the nutrition intervention; their expected treatment benefit would be 4.1. Furthermore, one
would assign the patients with characteristics that lead to the end nodes R1 and R4 (31% of the popu-
lation; Figure 3) to the education intervention; their expected treatment benefit would be, respectively,
3.7 and 1.6. For the patients in R3 and R5, there is no clear benefit for one treatment over the other, and
assignment could be carried out on other grounds, for example, accessibility of the treatment. (Note that
some caution is needed here: To determine the expected treatment benefit for future patients, the ideal
situation would be to estimate the treatment outcome in the leaf nodes of the trees for an independent
test data set, see Supplementary materials C.)

5. General discussion

In the present paper, we dealt with the ubiquitous finding of treatment effect heterogeneity. In many
contexts, there is an increasing awareness that a ‘one size fits all’ approach to treatment may be far
from optimal. Hence, the construction of suitable methodological tools for the identification and study
of treatment–subgroup interactions is of high pragmatic importance, not in the least in view of the
development of evidence-based personalized medicine.

In the construction of a suitable methodology for the study of treatment–subgroup interactions, one
may not ignore a research setting that shows up very often in empirical practice, namely that of RCTs
without strong a priori hypotheses on the nature of subgroups involved in treatment–subgroup inter-
actions. Two kinds of settings may arise: a setting with a small number of potential treatment effect
modifiers (for which advanced methods such as fractional polynomials are suitable [12]) and a setting
with a large number of potential effect modifiers. At present, typical methods that are available for the
latter setting are of a tree-based sequential partitioning type. In this paper, we reviewed a few of these
methods, and we proposed a novel member of the family, QUINT.

An advantage of the tree-based methods under study is that they yield output that lends itself (in prin-
ciple) to a straightforward interpretation [27].¶ The relevance of the methods for treatment–subgroup
interactions is further obvious when looking at their associated objective functions in which such
interactions play a key role. The distinctive contribution of QUINT in this regard is its focus on qual-
itative treatment–subgroup interactions. These are especially important if the primary concern of the
researcher is on optimal treatment assignment. In fact, the objective function of QUINT is a straightfor-
ward formalization of a qualitative interaction with significant pragmatic consequences on a treatment
assignment level.

Tree-based methods (including QUINT) can efficiently deal with RCT data that include large num-
bers of baseline characteristics. A major reason for this is their stepwise, greedy nature. Importantly, this
efficiency may be at the expense of ending up in locally rather than globally optimal solutions (although,
the simulation results of QUINT point at a rather satisfactory optimization performance). For instance,
in each step of QUINT, a split involving an empty }1 or }2 is discarded. However, by discarding such
splits, it is possible that in the next step, a more powerful split in terms of the partitioning criterion will
be missed.

Beyond any doubt, the Achilles heel of post hoc methods to derive subgroups from RCT data that
are involved in treatment–subgroup interactions is the risk of inferential errors. This includes failures
to detect interactions and especially also identifying apparent interactions that cannot be replicated in

¶Otherwise, the easy interpretability of trees immediately relates to the fact that most tree-based methods (including QUINT)
focus on rectangular partitions (i.e., partitions of the form X1 > s1 ^ X2 > s2, where s1 and s2 denote split points). If
one conjectures that weighted linear combinations of baseline characteristics are important moderators and if one wants to
induce such combinations during the data analysis, the use of other methods is advisable (e.g., [31]). If such combinations
are known a priori, they can obviously be included in a tree-based analysis.
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follow-up studies [1, 30]. Whereas the latter is a bottleneck for all post hoc methods, tree-based meth-
ods are especially vulnerable at this point as they rely on a very large search space based on a very huge
number of covariate split-point combinations. To be sure, several tree-based methods (including QUINT)
make use of cross-validation-based pruning procedures to prevent themselves from overfitting the data at
hand, but this cannot be considered a foolproof solution. With regard to QUINT, in the present paper, an
attempt has been made to deal with the problem of inferential errors in a constructive way by subjecting
such errors to a systematic investigation in a set of simulations. It seems fair to conclude that these sim-
ulation yielded mixed results: On the one hand, they gave a good indication of types I and II error rates
under several conditions (these rates being comparable with that of other tree-based methods), and they
also provided clues about controlling these levels through the choice of a suitable critical value for an
initial test of absence of qualitative interaction. On the other hand, finding a good balance between types
I and II error rates appeared to be rather tricky. Moreover and most importantly, to arrive at acceptable
rates large sample sizes (and probably larger than feasible within several contexts) seem to be inevitably
necessary. Probably the safest way to deal with QUINT and related tree-based methods is to consider
them exploratory tools that yield useful hypotheses. Subsequently, these hypotheses should be tested in
follow-up confirmatory research with new RCTs that make use of a stratified randomization in which
the strata are constructed on the basis of the splitting variables and split points as identified by QUINT.
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